Welcome

What is PEX?

- Degrees of crosslinking by method:
 - § PEX-a (Engel) 80% plus
 - § PEX-b (Silane) 65-70%
 - § PEX-c (Radiation) 70-75%
- Uponor's AQUAPEX is preferred 2-to-1 over the competition

The Hunter Museum of Art, Chattanooga

Our innovative solutions help to preserve natural resources

Low exergy systems

- Low temperature heating and high temperature cooling integrated with the use alternative energy sources (geothermal, solar, waste, free sources)
- Thermally Activated Building Systems (TABS)
 - § Combined heating and cooling
 - § Insulated Tap Water (TW) systems
 - § Water Recycling and Rainwater Utilisation
 - § Recycling Energy from Waste Water

Radiant Cooling - Definition

- A hydronic radiant cooling system is an installation of embedded tubes or surface mounted panels that are designed to absorb and remove energy from a space
- Just as in heating, a radiant cooling system uses the structure and surfaces of an area to transfer energy
- In radiant heating systems, the energy moves away from the heated surface towards the cooler area
- In radiant cooling systems, the energy moves towards the cooled surface from the warmer area

Radiant Cooling -Then and Now

- Original challenges for radiant cooling in North America:
 - Misinformation
 - § Hydronics and radiant were very small market
 - § Air systems dominated the market
 - § Past poor performing systems
 - No control of water temperature and humidity
 - § Perception of high installed cost
 - § Developers and not the owners making decisions
- The tide is changing
- ASHRAE Partners, LEED Projects, and European based vendors are designing and installing many successful projects

The Copenhagen Opera House

Common Radiant Cooling Applications

- Museums
- Institutional & educational facilities
- Office buildings
- Manufacturing & retail spaces
- Hospitals/health care facilities
- Dormitories, barracks & prisons
- Churches
- Airports

Radiant Cooling - Advantages

- Better Indoor Air Quality
 - § Ventilation air is not recirculated
 - § Limited wet surface of cooling coils
 - § Minimized likelihood of bacterial growth
- Better User Comfort
 - § Room temperatures are closer to outside air temperature
 - § Radiant heat transfer is direct and draft free
 - § Lower noise than normal space conditioning

Radiant Cooling -Efficiencies

- § Water has roughly 3,500 times the energy transport capacity of air
- § With radiant space conditioning systems, the ventilation function is separate
 - The volume of air moved and component size can be up to 5 times less
 - Fan power and duct size is much smaller
- § The cost of a radiant cooling system is comparable to traditional variable-airvolume (VAV) system

*Analysis and statistics provided by the Lawrence Berkeley National Laboratory (LBNL)

Radiant System Economics

- LBNL modeled office buildings in 9 US cities comparing radiant with ventilation and all other forced air VAV systems
 - § Findings:
 - Radiant cooling, on average, saves 30% overall energy for cooling and 27% on demand
 - Energy savings of
 - 17% in cold, moist climates
 - 42% in warmer, dry climates

The Akron Art Museum, Ohio

Types of Loads

- Typical radiant cooling loads consist of two primary components
 - § Sensible load
 - § Latent load
- Radiant cooling systems also address a third component
 - § Direct solar load

100% peak power 37.5%-Fan and motor 57.7% -1.5% - Pumps 18.8%--7.5% Load from lights 9.3%-Air transport load Chiller 62.5% 34.4%-Other loads -34.4% Radiant cooling Conventional Source: LBNL HVAC system HVAC system

A typical office building in Los Angeles as modeled by LBNL

Sensible Load

- The external loads account for only 42% of the thermal cooling peak
 - § 28% of the internal gains were produced by lighting
 - § 13% by air transport
 - § 12% by people
 - § 5% by equipment
- This is the dry bulb heat or heat gain in the space
- Radiant cooled systems can handle a significant portion of this load
- Absorption is dependant upon a decreased surface temperature

Latent Load

- This is the energy that is contained in the moisture in the air, the wet bulb load or gain
- A phase change is required to address this load
- Radiant cooling systems <u>can not</u> address this load
 - § The ventilation system must:
 - Address the latent load
 - Balance of the sensible load if any exists
 - Control the level of humidity within the air system
 - Meet the requirements of the Indoor Air Quality Standards for fresh air
- Dew point is determined by the relative humidity and temperature within the space
- In most cases an Rh of 50% or lower will be sufficient to prevent condensation on the cooling surface
- Humidity level in the building must be controlled through the ventilation system

Direct Solar Load

- This is the solar or short wave energy that directly impacts the cooling surface
- It can be absorbed before it has a chance to reflect into the space and to become part of the sensible load
- Absorption does not require a decreased surface temperature

Direct Solar Load (continued)

- Short wave radiation (sun, electrical lights)
 - § Energy transferred independent of room temperature and surrounding surfaces
- Amount of energy absorbed depends on absorbtivity of material
- Radiant Cooling capacity is 25 32 Btu/h/ft²
- If Solar load exceeds cooling capacity
 - § Increases the floor surface temperature
 - § Emits long wave radiation back into space

The LeMay Auto Museum, Washington

Design Factors

- Load
- SurfaceTemperature
- Water Temperature
- Dew Point
- Spacing
- Loop Lengths
- Energy Equation
- Size of pipe

Design Considerations

- Load 12 to 14 Btuh/sqft, up to 32 Btuh/sqft
- Surface Temperature 67deg occupied, 65 unoccupied (ASHRAE 55 -2004)
- Water Temperature 58 deg
- Dew Point safety factor, keep water temperature 2 deg. Above dew point
- Spacing 6 OC (max 9 OC)
- Loop Lengths 250 to 300 ft for 5/8"
- Energy Equation Btuh = 500 x gpm x dt
- Size of pipe 5/8" typical
- Design differential temperatures
 - § 5°F for cooling