Gipe Associates, Inc. CONSULTING ENGINEERS

Geothermal Heating and Cooling Fundamentals ASHRAE – Philadelphia Chapter

Geothermal Heating and Cooling – Is It Right for your Building or House?

By: David R. Hoffman, P.E., LEED AP, Cert. Geo. Designer Gipe Associates, Inc.

Today's Agenda

Introduction

Commercial Geothermal Systems

Lessons Learned

Residential Geothermal Systems

Typical Costs

Rules of Thumb

Emerging Technologies

Need to Thank:

Dr. Steve Kavanaugh

The Well Drillers

Geothermal and Commercial Applications

Gipe Associates has been involved in over 120
Geothermal Projects

Basic Fundamentals The Refrigeration Cycle

Geothermal Piping Headers

Geothermal Hydronic Pumps

Heatpumps

Vertical U-tube Fundamentals & Applications

COMMERCIAL SYSTEM

Geothermal System Flow Diagram

Judy Center in Cambridge, MD Before

Judy Center in Cambridge, MD After

Washington College in Chestertown, MD Before

Washington College in Chestertown, MD After

Washington College in Chestertown, MD New Residence Halls

Salisbury University

- <u>Pocomoke Hall</u>: Existing Air Cooled Chiller w/ new fuel fired boiler to supply dual temp system
- Manokin Hall: Ground Source Heat Pump system with Water-to-Water Heat pumps to supply dual temp system.

	Pocomoke Hall (Bid Spring of '09)	Manokin Hall (Bid Fall of '09)
HVAC/Plumbing	\$1,681,800.00	\$1,579,500.00
Electrical	\$687,948.00	\$820,000.00
Total MEP Cost	\$2,369,748.00	\$2,399,500.00
Total Construction Cost	\$6,175,440.00	\$5,175,000.00

Both Projects Similar in Size (21,400 sq.ft.)

Water to Water Heat-Pumps

Energy Recovery Units

Energy Recovery Technology

- Variable speed control on Supply & Exhaust Fan
- CO2 Monitoring
- Dedicated Outside Air Tempering Control
- Heat Pipe Technology
- Outdoor Air Reset
- Airflow Monitoring

Domestic Hot Water

Fuel Cost Comparisons

Fuel	True Cost in \$ per 100,000 BTU (corrected for efficiency)
No. 2 Fuel Oil	\$2.00
Natural Gas	\$1.88
Propane Gas	\$3.22
Electric	\$3.52
Air Side Heat Pump	\$1.56
Water Cooled Heat Pump	\$0.70 (Geothermal)

Matapeake Elementary School - Mechanical Room

Washington College – 3 Dorm Project Geothermal Main pipe layout

Tudor Farms – Main House Geothermal Heat Exchangers

Chesapeake College - Higher Education Center

Project Specifications:

- ➤ Building Size 26,700 sq. ft.
- ➤ System Type Closed Loop Vertical U-Tube
- ➤ Borehole Data –

60 Total Boreholes 255' Total depth below grade 4-3/4" Bore Diameter 3/4" U-Tube Piping

➤ Treatment of Outside Air – Energy Recovery

Unit utilizing dual temperature coils

for conditioning of air and wrap around
heat pump technology

Unique Design Features-Indoor Energy Recovery Units

Chesapeake College Dorchester Administration Building

Project Specifications:

- ➤ Building Size 23,500 sq. ft.
- ➤ System Type Closed Loop Vertical U-Tube
- ➤ Borehole Data –

45 Total Boreholes

279' Total depth below grade

4" Bore Diameter

1" U-Tube Piping

➤ Treatment of Outside Air – 100% Outside Air Water Source Heat Pump Units with hot gas re-heat for dehumidification

❖Unique Design Features-100% Outside Air WaterSource Heat Pump Units

Talbot County Community Center

Project Specifications:

- ➤ Building Size 30,000 sq. ft.
- ➤ System Type Closed Loop Vertical U-Tube
- ➤ Borehole Data –

190 Total Boreholes310' Total depth below grade

5" Bore Diameter

1" U-Tube Piping

- Ice Rink De-humidifier
- Snow Melt Pit
- Ice Rink Water Treatment

Lessons Learned - Commercial Well Field

What are some of the "GOTCHA's"?

- Borehole Diameter
- U-tube pipe diameters
- Pump / Piping Size
- Pipe Schedule (SDR-11 vs. SDR-13.5)
- Reynold's Number (maintain min. 2 ft/sec velocity in piping)
- Expansion Tank Sizing
- Vaults (When to use?)

Lessons Learned - Commercial Outside Air - Dual Temperature System

What are some of the "GOTCHA's"?

- Multiple, small, Water-to-Water Heat Pumps
- Variable Speed Pumping of Water-to-Water Heat Pumps in lieu of Individual In-Line Pumps.
- Dead-band on Dual Temp Loop

Lessons Learned - Commercial Miscellaneous

What are some of the "GOTCHA's"?

- Filter Racks on Heat Pumps
- Relief Valve
- Anti-Freeze: Glycol vs. Methanol
- Design Flow Rate Diversity

Applications

Fan Coil units

Dedicated Outdoor Air Systems

Domestic Hot Water

Domestic Hot Water Pre-Heating

Kitchen Hood Make-up Air

Chilled Water

Fume Hood Make-up Air

Chilled Water w/ Storage

Radiant Heat

Hot Water

Hot Water w/ Storage

Buildings

Dormitories

Commercial Kitchens

Science Buidlings

Office Buildings

Dining Halls

Vocational Schools

Historic Buildings

Elem./Middle/High Schools

"Anything done conventionally can be done with Geothermal"

Geothermal in Residential Applications

THE HOFFMAN HOUSE

Geothermal System Flow Diagram

Geothermal Split System Heat Pumps

Domestic Make-up Water Valve Train

Expansion Tank

Geothermal Water Pumps

Finished Site

De-Superheater Capability

De-Superheater Capability

Lessons Learned Residential

What are some of the "GOTCHA's"?

- De-Superheaters are great!
 (Connect Inlet to Coldest Water)
- Heating Dominated Borefield
- Hydronic Specialties
- Pump Noise (Avoid high RPM pumps)
- Variable Speed Pumping in Large Systems (Wilo / Grundfos)

Typical Costs

First Costs:

Commercial: \$23 - \$45 per sq.ft. Residential: \$10 - \$14 per sq.ft.

(Does not include Tax Incentives or Rebates)

Energy Costs:

Commercial: \$0.80 - \$1.10 per sq.ft, per year

Residential: \$0.80 - \$1.25 per day

Maintenance Costs:

Commercial: \$0.10 per sq.ft, per year

Residential: \$0.03 per sq.ft, per year

Design Rules of Thumb

Vertical Boreholes

Mud Drilling: 250 – 400 ft. borehole per Ton Rock Drilling: 200 – 300 ft. borehole per Ton

Equipment Capacities

Commercial Projects: Average = 300 sq.ft./Ton Residential Projects: Average = 500 sq.ft./Ton

Pumping Flow Rates:

All Projects: 3 Gallons per Minute/Ton

1 Ton = 12,000 BTU/Hr

Pump Horsepower - Goal

Grade Horsepower/100 Tons

A 5.0

B 7.5

C 10 - 15

Design Rules of Thumb

Equipment Effeciences

Heating - COP Cooling - EER

(Coefficient of Perf.) (Energy Efficient Ratio)

Commercial: 3.5 17.0 Residential: 4.5 20.0

Where:

COP = What you get (BTU/Hr)

What it cost you (Electric Energy in BTU/Hr)

EER = What you get in (BTU/Hr)
Power Input (in Watts)

Emerging Technologies / Improvements ECM for Motors

Why?

- Ultra High Efficiency (Energy savings up to 67% average compared to PSC motors)
- Uses DC motors which are significantly more energy efficient that AC motors and are easier to control
- Soft starts and stops
- Fan Laws can be utilized to reduce Energy Consumption
- 10% Reduction in Airflow results in 27% energy reduction.

Emerging Technologies / Improvements <u>Variable Speed Compressors</u>

Why?

- Reduction in compressor energy and water flow rates
- Improved part load performance
- Enhanced Humidity Control (Lowers the Equipment sensible heat ratio without reheat.

Emerging Technologies / Improvements Solar

Why?

- Electrical Utility Distribution losses are in excess of 70%!
- Local Solar can eliminate the majority of Electrical Utility Distribution losses and reduce cost of energy per KWh.
- Thermal Solar can be utilized to supplement Geothermal loop temperatures in heating mode.

SOLAR HOT WATER HEATING SYSTEM

Notice all pipes/panels are sloped ¼ inch per foot

Solar Thermal Drain Back
Tank & Piping

Solar Thermal Flat Plate Collectors

- Completely amazed at Performance
- First Cost including estimate for Labor = \$6,250
- Simple Payback = 5 years
- Return on Investment = 20% Tax Free
- Where to Purchase: Solar Heat Exchange Manuf.

Emerging Technologies / Improvements

Ductless / Geothermal

Why?

Extremely Efficient

- No Duct losses due to conduction or leakage
- Simultaneous Heating / Cooling
- Variable Refrigerant Volume (VRV) Systems

Finally....

A Combination Solar/Wind Powered Clothes Dryer

How Can You Learn More?

Consult the Experts

- Contact
 - Gipe Associates, Inc. Easton (410) 822-8688
 - Gipe Associates, Inc. Baltimore (410)-832-2420
- Websites
 - Geothermal Heat Pump Consortium
 - www.gphc.org
 - University of Alabama Geocool
 - www.bama.ua.edu/~geocool
 - Intl. Ground Source Heat Pump Assoc. IGSHPA
 - www.igshpa.okstate.edu
 - Geo-Heat Center
 - www.oit.edu/~geoheat
 - Phillips Drisco
 - www.driscopipe.com

Questionsand Answers

