

Recent Trends in Buildings Industry

- Centralization of Ownership (large chains, owners)
- Worker Health / Productivity / Comfort
- Continuous commissioning, ESCOs, utility programs
- Price shocks, energy deregulation
- Bioterrorism?
- Green buildings
- ZEB
- Climate change? → Carbon regulation?
 (probably not at this time)

Buildings Water Use is Significant

Including electric generation, buildings account for 45 percent of U.S. water use

- Not including electricity, per capita use is 100 gallons per day for domestic use.
- Approximately 140 billion gallons of water per day is used to provide electricity to buildings

5

Policy Drivers – Buildings Will Be Getting Better

- Economic and environmental drivers
- Mandatory performance metrics: national and local codes ... but are they enforced?
- Voluntary performance metrics (LEED, 90.1, 189.1, BREEAM, BEPAC, many others)
- National and international policy
 - Climate Change?
 - Kyoto Protocol
 - EU building performance mandatory labeling in 2009 ...
 - US energy policy voluntary approach

New Technologies: Already or Nearly Available

Why LEDs?

- Potential for impressive energy-efficiency improvements and large savings on maintenance
- · Directional control and uniformity
- Fully dimmable
- Reduced glare, long life and durability projections

Can we get to Net-Zero Energy?

Building Simulation: Key to Improving Building Performance

Simulation Drivers/Trends

- Simulation is still more art than science
- Major Issues:
 - Building data maintenance/storage throughout building life-cycle
 - Training...must train users in simulation methods not tools!
 - Tools must enable and encourage new technologies--too many technologies/systems that various tools cannot simulate
- Code Compliance
- Points for Green Building Ratings
- Qualify for Utility or Government Rebates/Incentives
- Green/sustainable design and policy are driving simulation more than energy costs (LEED, EPDB)

Simulation Trends

- New tools/capabilities in established tools
 - Interoperability—IAI IFC, XML, BIM Standards
 - Visualization/VR
 - Integration—thermal, CFD, electrical, IEQ, visual
 - Risk assessment (insurance)
 - Embodied energy, LCI/LCA, toxicity of built environment
 - Emissions
- More tools, not fewer, customized to user needs
- Users continue to want more at lower effort

EnergyPlus

- Fully integrated building, envelope, HVAC, water, and renewables simulation program
- Available free at <u>energyplus.gov</u>
- Originally based on BLAST and DOE-2.1E, far exceeds their capabilities now

EnergyPlus

- Designed for flexibility and expansion
- Many new low-energy technologies
- Sub-hourly calculations
- Many output metrics: energy, water, emissions
- 4000+ pages of documentation and testing/validation reports
- Weather data for more than 2100 locations worldwide (Google Earth layer for weather data)

buildings.energy.gov/energyplus/download/ energyplusweatherdata.kmz

Buildings Designed Using EnergyPlus

Freedom Tower

- Building energy simulation of alternatives
- Aggressive energy and environmental goals
- Code compliance

New York Times

- Building energy simulation of alternatives
- Controls, peak demand, energy use impacts

"Every building is a forecast. Every forecast is wrong."

Stewart Brand

Simulation vs. Operating Energy

- In low-energy building research, simulation has been critical for designing and operating buildings to support decision-making
- BUT, compared to simulations, real buildings
 - use more energy
 - produce less power
 - have worse controls
 - have more occupant complaints
 - GIGO

Why Use Energy Simulation? Inform energy decisions from earliest phases of design through construction and into operation Help the design team and owner focus energy-use reduction efforts where they will be most effective Permit assessment of predicted performance with established benchmarks or project goals Size renewable energy systems and determine their likely % contribution Evaluate alternatives through programming, design, construction, operation—retrofit, too Simulation is cheaper than constructing the wrong building!

CADD to EnergyPlus

GREEN

- Translate CADD to EnergyPlus
 - International Alliance for Interoperability
 - · any CADD software that supports interoperability
 - available since 2001
 - limited to what CADD tools export—typically only geometry
 - Green Building Studio (now part of AutoDesk)
 - Web-based conversion of major CADD formats to energy simulation inputs
 - · limited coverage
 - requires users to create their CADD drawings in structured way (may not follow designer regular methods)

BENTLEY
MICROSTATION VB

- Graphisoft adding direct export from ArchiCAD to EnergyPlus
- Bentley direct link in Hevacomp and AECOsim Energy Simulator from Revit, AutoCAD, Microstation, and ArchiCAD.
- Interoperability is key to getting energy simulation mainstream. Other drivers—zero-energy buildings and green building rating systems

Google SketchUp and OpenStudio

- Google SketchUp 3-D environment
 - intuitive, easy-to-use 3-D drawing software available from Google
 - popular with architects
 - powerful API using Ruby programming language
- OpenStudio
 - adds EnergyPlus functionality to Google SketchUp (Free and Pro versions)
 - available free at <u>www.energyplus.gov</u>
 - distributed under open source license (GPL)
 - provide feedback during the conceptual phase of the design process
 - geometry only—must have energy model in mind

"The future has already arrived, it's just not widely distributed."

William Gibson

Summary

- Changes in building technologies over the next several decades will be significant—driven by:
 - Policies (labeling, energy standards, EPC, carbon regulation)
 - Demand for better buildings from building owners and occupants
- It is possible to create low-energy buildings today but it requires integrated building design and performance simulation.
- Simulation is critical to support decision-making to achieve low- and zero-energy buildings.
- But the information coming from simulation is only as good as the data entered: GIGO
- No one tool can simulate everything—smart users have a suite of software that can support their work.

Think about Metrics

Energy

Demand

Cost

Water

IEQ

Carbon

Business

(student, occupied room, sales)

Questions? Dru Crawley Bentley Systems, Inc. Dru.Crawley@bentley.com